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Abstract—The hypercircle method of structural analysis, the theory of which was developed in Part
I. is shown to have certain advantages, in terms of computer time required, over conventional
methods of analysis for very large rigid-jointed planar frames. This efficiency is achieved by the
systematic use of “superclements™ based on the four-node rectangular tinite element.

INTRODUCTION

In the preceding paper[1], the hypercirele method of Synge and Prager was used to derive
formulac bounding displacements and internal forees in rigid-jointed frames. For complex
structures with many members the dimensionality of the function subspaces encountered
in these formulae is large, presenting an obstacle to practical utilization of the hypercircle
method. In this paper that obstacle is removed by introduction of special lincar subspaces
bused on interpolation procedures borrowed from the finite element method. This technique,
which may be termed the superelement method, provides an effective tool for the analysis
of large rectangular rigid-jointed frames subjected to lateral loads.

Figure 1(a) shows the type of structure and loading considered. While not the most
general possible rectangular frame, it is adequate to exhibit the practical potentialities of
the hypercircle method. The bays of this frame are numbered 2 = 1,6 and have lengths L,.
The stories are numbered ¢ = L, n(2) and have heights #/,. The pair (z, /) thus identifies a
“cell™ of the structure. The joints are labelled using the same system except that « now
refers to the column line and 7 to the beam line; hence x = 1,h+ 1 and i = 1, ¢(2). where
c(2) = max [n(x— 1), n(x)]. Associated naturally with this scheme is the system of beam and
column identification shown in Fig. 1(b).

THE BASIC COMPATIBLE STATES AND THE KINEMATICAL EQUATIONS

The basic compatible states (i.e. those defining the subspace L) that will be used here
arc those corresponding to the individual joint displacements. In order to represent these
states and their inner products it is convenient to introduce a descriptive notation in place
of the generalized notation used in Ref. [1]. Thus U] will denote the state obtained by
imposing a unit horizontal displacement on the joint labelled (x./) whilc all other dis-
placements are prevented. Similarly 07 and V] will correspond to a unit rotation and vertical
displacement of the joint. respectively. The joint displacements and forces associated with
these states are shown in Fig. 2. Deformation due to shear is ignored. Since S§=10. a
general state S* e L* may be represented

t Equations are numbered consecutively from Part I[1].
$ Author to whom correspondence should be addressed.
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Fig. 1. General structure and loading.
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- 1=
If this expression is used to rederive the displacement equations, eqns (48), then the latter
may be rewritten as
Aot

YK =P x=1Lb+1 i=1c(2) (94)

Bl j-1

where

ULUD CULOD ULV
K =|<onuly  <one)y <oV (95)
VUL (VEOT (VEVD

=0 (96)

Pr = [KSE* UM (SE* 00> (S VD' o7

The inner products in matrix (93) are obtained using eqn (41) and Fig. 2. Since cach interior
joint is connccted to four other joints as well as to itself it follows from eqn (94) that

LA R . TNTE SN G S ST SN ) S SR (98)
may be written for cuch interior joint (a. ). together with appropriate equations for the
boundary joints. The matrices appearing in eqn (98) are, in general, tridiagonal.
For future reference. it is noted that the “bandwidth™ of matrix K represented in eqn
(98) is minimized by interchanging the order of the summation in eqn (94), i.c.
Hrman

Y YKIN =P i=lm: x=a0) (99)

1= 1

Here n,, is the maximum number of stories over all the bays of the frame, and (/) denotes
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Fig. 2. Joint displiacements and forces associated with U7 and 0.

those column lines that intersect the jth beam line. This has the effect of changing the order
of the terms in eqn (98). If the order of summation is unimportant, the Einstein summation
convention may be used to suppress the summation signs. Then the equation

Ki'x! = P (100)

may represent cither egn (94) or eyn (99).
Since the frame is loaded only by horizontal forces at the joints, the vector P is given
by

(SPRUD =P (8§01 =(S§*. Vi) =0 (1ot

where P} is the lateral load at the joint (., ).

SUPERELEMENTS

The equations developed in the preceding section are now transformed by defining a
lincar subspace of much smaller dimension than the actual number of kinematical degrees
of freedom of the structure. This is done by defining a new sct of displacements and a linear
transformation between the new and original sct, i.e. a relation of the form of eqns (86).
The particular form of this relation usced here is based upon the rectangular four-node finite
element.

The first step in the implementation of the procedure is the construction of a kinematical
superelement mesh. This is done by dividing the frame, along its beam and column lines,
into rectangular four-node elements, the nodes coinciding with the joints that lie at the
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Fig. 3. Portion of typical kinematical superelement mesh.

corners of the rectangles. An example of a mesh constructed in this way is shown in Fig.
3. The nodes are specified by pairs (2°.4°), where 2" = 1.6 and i* = 1,0’ (2).

It is well known from finite element analysis that the displacement field within the
rectangular element with corner nodes may be related to the nodal displacements by
means of bilincar interpolation[2]. The discrete analogue of this is used to relate the joint
displacements within a superelement to the displacements of the corner joints. Then if nodal
displacements are denoted by

xFo=lar 0F er)t o (102)

the full set of joint displucements is given by

# owixy
X! = Z Z mx 2= Lh+1l; i=1c(2). (103)

EEE B A

In the above equation T2* are the matrices of two-dimensional shape functions obtained
by multiplying the one-dimensional lincar shape functions in the horizontal and vertical
directions, i.c.

M= N N7 (104)
where
0 i<i(i'~1)
[i=i(i" = DLy — i = ] (=1 <igi(in)
Nuw =) (i@ + 1) = i + 1) = i) i) < i <ili'+1) (105)
0 izZii+1
0 a2z —-1)
’ [x=a(x — D}/ [2(2") —a(z" —1)] a(r’ —1) € 2 € a(d’)
N* = [a(a’ + 1) —a)/[x(x"+ 1) —a(x)] a(x) Ka<<ale’+1) (106)
0 22 a(x 4+ 1),

In eqns (105) and (106}, a(2') denotes the number of the column line corresponding
to the vertical nodal line numbered %" and #/") the number of the beam line corresponding
to the horizontal nodal line numbered .

It is noted that the interpolation is carried out on the beam and column indices rather
than by actual distances. This assumes that floor heights and column line spacings arc
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approximately constant within any one elemetit; the superelement mesh should be con-
structed accordingly.

THE VERTEX EQUATIONS

Equations (103), with I'}* defined by eqns (105) and (106) for any given kinematical
superelement mesh, represent the desired linear transformations. The vertex of the linear
subspace defined by these equations is determined by the vertex equations

Kx=P. (107)

This may be written out more explicitly in the form of eqns (94). i.e.

oo
YK =P a=Lb; i'=lnE) (108)
F=1j=1

where KX are 3 x 3 matrices. In order to obtain K and P, invariance principle (88) is
applied. Thus

Kx*x~2P-x = Kx*x-2P-x. (109)

This may be written as
KIxlexy = 2P7 - xY = K}'x) - X} = 2P} - X} (110)

where the Einstein summation convention is understood. If transformation (103) is sub-
stituted into the right-hand side of the above equation, there follows

rn Kxﬂ rﬂﬂ

i PL=TPL (111
Equations (111) correspond to transformations (89).

The structure of the vertex equations is now examined. It is obscrved that cach interior
node is connected through the surrounding elements to all of the cight surrounding nodes,
Equation (108) may therefore be put into the form of eqn (98). For cach interior node
(2. i") the equation

T(r - 1)l =~ 1) ¥z - 1) (x—l) (- ) ix -l)
KM ooxd 0 +KHT 7 Px +KITOXETN + KiG - nXi-n

S ’ x ! (2 + 1) (:1»1) 2(2+ 1) (2 + 1) (2 + 1) {!0—1)_ 1
+l,\t'lx'§:x'+K7’l’;'+l)_x_(xl'+l)+kl(:—I)‘u—l) Ku x +K:(:+I)x(l+l) P: (llz)

may be written, together with a set of equations for the nodes lying on the boundary of the
frame. Now from the form of transformation (111) it may be deduced that cach of the nine
3 x 3 matrices appcaring in eqn (112) is in general tridiagonal. For computational purposes
it is again noted that the bandwidth of the vertex equations is minimized by rewriting eqn
(108)

Z KX =PY i = b @ =a'(i") (113)

=G

where b;,,, is the maximum number of “'superstories™ over all the “superbays™ of the mesh
and f°(j") denotes those vertical nodal lines that intersect the jth horizontal nodal line.
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Fig. 5. Loading for states J* and J;.

THE STATICAL EQUATIONS

The statical problem is now considered. It may be broken down into two parts : (i) the
construction of the state S§* e L** and computations thereupon ; (i) the definition of the
subspace L” through a suitable set of residual states and the construction of the flexibility
matrix B of their inner products. The latter part is made casier by introducing residual
states that cause B to assume a form corresponding exactly to the form of the stifTness
matrix K, which has alrcady been described. These states will be developed later. First, the
state SE* is constructed.

CONSTRUCTION OF S$3*

It is assumed that the structure is loaded as shown in Fig. 1(a); i.c. lateral forces act
on all the horizontal faces. Due to the uneven roofline, a given bay may be subjected to
forces on both sides: these are labelled P* and P? (Fig. 4). Let each bay in turn be
disconnected from the adjoining bays by severing the connecting beams and let the resulting
single bay be rendered statically determinate by inserting mid-member hinges as in the earlier
example. The member forces produced by the lateral loads acting on the determinate
structure may be developed with the aid of the two loading systems shown in Fig. 5. Let
J? and J7 be the states obtained when a unit load is applied to the upper left and upper
right corner, respectively, of the (x.9) cell. Then state S§* may be written as

b n(1)

St* =Y Y (PHI+ P (114)

xwl im]

The member forces associated with J* and J? are not developed explicitly. Instead, these
two states are written in terms of the new states

D = (4/H) I +3 ), D = @/H)J!=I)). (115)

Equation (114) may now be written as
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Fig. 6. Loading and member forces for states Z7 and 27,

l LYY
DI [P‘ Z H,D} + P} S‘ HkD,,] (116)
1=l 1=
But
nl{x} n{x) ntx) Li%1)
i Y HD; =Y HD; Z Pi=Y HID; (17
il It-:l =1 t=1
where
nix)
m=ypr (118)
k~i

is the sum of all the loads acting on the left side of the xth bay from the ith story level to
the top. Similarly

nfx} niak

Y P Z HD; =Y 1o (119
1= 1 k=1 t=1
. LR
m=3 p; (120)
k=i
Hence egn (116) may be written as
b ow)
i =, Z Y H(IT D+ 11:DY). (121)
21 jal

Representation (121) may be used to carry out computations involving St*, but these are
simpler if the two lincar combinations

Z}= (D +D). Z7 = YD -D)) (122)
are introduced. These are shown in Fig. 6. Equation (121) then becomes
& otz

1
=4 L XH@ZI+§T) (123)

x=1 i=1

where

SA3 24:6-G
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¢ =M+ ¢ =m-1. (124)

From eqn (123). a computation shows that

nix) nifh)

16/SE* Z Z Y Y HH W+ W (125)

=l =1 i=1 =1

where

raft i i o 721l

Wil =Ly, W = LT, (126)
Expression (125) provides a convenient means of computing [|S3*). In applying this formula
advantage may be taken of the bandedness of matrix W and the extreme sparseness of
W' The components of these matrices are obtained casily upon reference to Fig. 6.

THE BASIC RESIDUAL STATES AND THE STATICAL EQUATIONS

The basic residual states (i.e. those defining subspace L") are developed by again
considering cach bay of the frame in turn as a statically determinate unit with hinges at the
mid-points of all the members. Since three degrees of statical indeterminacy (three statical
DOFs) are associated with eich story ol a single bay frame, it is necessary to construct
three independent residual states for cach cell of the structure. The most natural choice of
these states, by virtue of their symmetry properties and localized nature, are the three states
R}, T? and S} shown in Fig. 7. These may be constructed by applying various combinations
of unit moment pairs at the hinges of the (. 7) cell, as shown in the figures. It is noted that
the generalized notation of eqn (42) has been replaced by a more descriptive notation.

A general state S** e L** may now be represented

& nx)
S** =Si*+ Y Y (rRI+0T!+51S)). (127)

22l -l

Quantities 7. 17, 57 may be termed the “redundants™ of the (. ¢) cell. If representation (127)
is used to rederive the force equations, eqns (48), it may be written as

h nifh
Y Bla+AT=0 x=1Lh: j=1.n(f) (128)

fA-13=1
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(RI.R}> (RLT)) (RLSD

BY = | (T2 R®Y (TALT) (T.S% (129)
(SLR' (SLT'Y (SLSP

o= ¢ S (130)

= (SI*R: (SI*Tiy (Si*.SHT. (131)

The inner products in matrix (129) are obtained from definition (18) and Fig. 7. If the
pattern of inner products contained therein is examined. a useful analogy emerges. With
the correspondence

U—~R. 0T, VoS (132)

matrices K in eqn (94) and B in eqn (129) are seen to be exactly analogous. In the
statical formulation, however, the cell replaces the joint as the basic entity. Since the same
connectivity propertics apply to both entities, eqn (128) may be written, by analogy with
eqn (9R), as

B" Vol '+BI el +Blal+ B, ol + B el AT = 0. (133)

The above equation may be written for cach interior cell («, 9. together with similar
cquations that apply to the boundary cells. The matrices appearing in egn (133) are
tridingonal, with the same pattern that occurs in egn (98). Finally, by analogy with cgn
(99). the bandwidth of B is minimized by rewriting cqn (128)

Y YBYel+Ar =0 P=lomg,: a=a() (134)

=1 B

where fi(f) now ranges over those bays that extend to the jth story level.
It is now necessary to consider the vector A} defined by eqn (131). From egn (123)

| b ntfh
(SE*.RD =4.Z Y ((RLZISH ¢ = (RLZIYH, )
g1 =1
(ST =0
b atfh
<s:*.s:>— Y Y (SLZIYH 4. (135)

/: b=

The inner products appearing in the above equations arc obtained from the member forces
shown in Fig. 7 upon application of definition (18). Also reflected in eqns (135) are the
vanishing inner products

CTLZ =(TLZ) =<KSLZY = (136)

STATICAL SUPERELEMENTS AND THE VERTEX EQUATIONS

Given the previous development of the kinematical superclement mesh as a means of
reducing the number of degrees of freedom of the structure, it is now natural to try to
construct a statical mesh for the same purpose. Since in the statical formulation the cell
merely replaces the joint as the basic entity, the nature of the statical superclement mesh is
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readily apparent. An example of such a mesh is shown in Fig. 8. [t is seen that the rectangular
four-node elements span between cells of the frame rather than between joints. Hence a set
of nodal redundants is defined

ot =[rF & sFIN (137)

These give the full sct of cell redundants through the bilinear interpolation

b o)
or=3% Y Qe 1= 1,bh; i=1n@). (138)

=l it
These cquations are analogous to cqn (103). The matrix Q2F is given by
= N, -N™ (139)
where the shape functions on the right are given by eqns (105) and (106) with i” in place
of " and «” in place of «”. It is important to note that while the kinematical and staticul
superclement meshes are based upon the same interpolation concept, they need not in
principle represent similar discretizations of the structure.
It is now a simple matter to write down the statical vertex equations. They are,
compuctly

Ba+A =10 (140)
or, more cxplicitly, by analogy with egn (107)
B gl +AX =0 (141)
in which BXZ are 3 x 3 matrices given by
B = Q¥BQ (142)
and
AY = QITAL (143)

In the above equations the summation convention is understood. Transformations (142)
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and (143) correspond to eqns (89). The previously discussed bandwidth considerations
apply also to egn (141).

BOUNDS ON THE STRAIN ENERGY

With the solutions x and ¢ of the kinematical and statical vertex equations. bounds on
the strain energy of the solution may be obtained. From eqns (58) and (92)

ISI* = V¥ =PF-x! (144)
and
ISIZ < [V**||* = IS§*|I* +AF - oF. (145)

It is recalled that [|S]|? is twice the strain energy of the loaded structure: hence for any
kinematical and statical superelement meshes, eqns (144) and (145) give upper and lower
bounds on the strain energy. If only one force does work during the loading process they
also provide bounds on the displacement corresponding to that force.

BOUNDS ON THE LATERAL DISPLACEMENT AT ANY POINT

The main problem of this paper will now be treated @ that of finding bounds on the
*drift”, or horizontal displacement at a particular point of the frame. This quantity is of
interest to designers of tall buildings since excessive drift may cause the structure to be
unscrviceable even while the stresses in the members are well within allowable limits. The
hypercircle/superelement method will now be further developed for the purpose of bounding
the drift.

It will be recalled[ 1] that bounds on pointwise quantitics associated with the solution
S are given by an inner product ¢S, G), where G is a suitably chosen state. If the desired
quantity is the horizontal displacement at the joint in the upper left corner of the cell labelled
(A, 1), then the correct choice for G s

G=1J (146)
where reterence is made to Fig. 5. [f the displacement in the upper right is desired the state
J;' should be used. Subsequent computations will be based on eqn (146), it being understood

that if the “leeward” displacement is desired, J7 should be replaced by J;'. Now if eqns
(115) and (122) are used, G may be written as

! 1 d .

Z HD} =Z Z H,(Z,"+Z,") (147)
it

so that

! 1
16IGI: =Y Y HH (W +Wi). (148)
)

i j
It is proposed to apply the bounding formula (82). i.c.
(C.G>—-R|Gl < ¢S.G) <KC.G)+R|G]| (149)

in which
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IGI* = IGI* -z -g' ~z"-&".
The solution of eqns (90)
Kg'=2z. Bg'=2"

is therefore required. In the above equations

The vector z’ is given by eqns (78). In the descriptive notation
@) = [KULG) <0;,G) (VI.GH]".
Now from eqn (146)
ULG =UnID =1 if a=A4.i=1; =0 otherwise
and clearly
OG> = (VE.G) =0,
Transformations (152) may be written in the form of egn (110), i.c.
(@) =T @)
and from eqns (153) -(156) it follows that
@) =[r o 0.
The vector 2” is similarly given by eqns (78). In the descriptive notation
@) = [KRI.GY (T1.G) (S1.GH|'

and
1 -
(RG> =2 Z H (KR ZIY+(RLZ)Y)
1=
(T;.G)=0
l !
;.G =3 Y H(SHLZY).
1=
Now transformations (152) are carried out

() = (@)

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)

(158)

(159)

(160)

With these computations the two systems of eqns (151) may be set up and solved. Hence
the quantity |G may be determined. The matrices involved in eqns (151) are just the
transformed stiffness and flexibility matrices which appear in the vertex equations. Since
these latter equations have already been set up and solved. eqns (151) entail relatively little

additional effort.

In addition, the inner product {C. G) appearing in expression (149) is required. From

eqn (92¢), with S} =0
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Fig. 9. Structure and loading : example 1.

(C.G) = 4z " x+(S§*.G) +2""q), (161)
Now from eqns (157) and (102)
7 x =T, (162)
If joint (A, ) is a node of the kinematical superelement mesh, eqn (162) becomes simply
7 x =uj. (163)

The second term on the right-hand side of eqn (161) is, from eqns (123), (126) and (147)

b omwy !
16<S3*.G> = ¥ 5 T HH (WEG + WEGR). (164)

a=1 t= 1 g
Finally, the last term in eqn (161) must be computed directly from

¢a = (&), (165)

PRACTICAL APPLICATIONS

The computations inherent in the hypercircle/superelement (H/S) method entail no
essential difficulty. In order for the method to compete successfully with the conventional
matrix displacement approach as 4 computation tool, however, pains must be taken to
eliminate unnecessary operations. This applies especially to transformations (89).

A FORTRAN code, named HYPER, has been created to perform the computations
of the H/S method. It has been tailored for analysis of “flattop™ frames loaded on their
lateral faces as by wind or seismic load. Results obtained with HYPER are now presented
and compared with the results of an exact analysis by the conventional matrix displacement
(stiffness) method.

The first structure to be studied is the ten story, three bay frame shown in Fig. 9. Three
sets of kinematical and statical meshes are used to compute upper and lower bounds on
the fateral displacement at the upper left corner of the frame. These mesh pairs are shown
in Fig. 10. It is scen that the first mesh pair is extremely coarse while the last mesh pair
includes all of the joints and bays of the actual structure. The middle set lies between these
two extremes.

Table | shows the results obtained from HYPER for the three cases. All of the scalar
quantities needed to apply the bounding equation, eqn (82), of the hypercircle method are
recorded in Table 1. (For reasons of economy of space the vectors used to compute these
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Fig. 10, Kinematical (left) and statical (right) superelement meshes: example 1.

quantitics are not listed.) The bounds provided by the coarse meshes are seen to be
reasonably close in spite of the small number of degrees of freedom employed (v = 12,
v’ = 27 compired to v = 120, v’ = 90 for the actual structure). Since all the joints and
bays of the actual structure are included in the third mesh pair, the bounds coincide and
give the exact solution, apart from a small round-oft error,

A usclul measure of the closeness of the bounds is given by the non-dimensional
quantity

R = R|G[/{C,G). (166)

This may be called the “‘normalized radius™ of the hypercircle. Reference to Table | shows
that R decreases considerably from the first to the second set of meshes. If the requirement
R < 0.10 is adopted as the criterion for calling the bounds **close™, then the second set of
bounds may be called “close™.

In going from the second to the last set of meshes, the expected results

IV*IF = [V**1* = ISIF, R=1[GlI =0, <(C.G) =L =U = thhea (167)

are reflected in the last column of Table . The computations were performed by HYPER
on an [BM 4341 computer in double precision (64 bit) accuracy. The values of ||S|* and
Uyaua Were computed on the same machine by the conventional matrix displacement
method.t These agree with the values provided by HYPER to the number of decimal places
shown in Table 1. It is also seen that the computed values of R, |G]l, and R are essentially
zero. The amount of CPU time required for the solution of the above problem by the CMD
method is approximately 2.6s. Reference to the bottom line of Table | shows that this is
considerably less time than that required by the H/S method even for rough bounds. In

+ The linear equation solvers BANFAC and BANSOL due to Weaver and Gere[3] were used in both the
CMD method and in HYPER.
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Table 1. Results obtained from HYPER for ten story frame example

Mesh i 2 3 Units
v 1227 24.45 120:90
Ve 5.65730 7.34753 8.41300 k in.
0.63919 0.830155 0.95054 kNm
ve=y? 10.0960 9.03963 8.31300 k in.
1.14069 1.02134 0.95054 kN m
z'x 0.33446 0.39463 0.43077 in.
0.84954 1.00236 1.094163 cm
Py ~0.97102 -0.97285 —0.974240 in.
—2.46640  —247105 - 2474570 cm -
g 0.022318 0.02546 0.027498 in.
0.056881 0.06466 0.0698460 cm
g 0.06544 0.065542 0.065598 n.
0.166226 0.166477 0.1666185 cm
{C.G> 0.384226 0.413394 0.430773 in.
0.975934 1.050021 1.0941634 cm
R 1.05341 0.650373 1.302x 103 tkim*?
11.19714 6.913078 13.84x 107 (Nm)**
e 0.07304 0.04580 1.477x10"¢ (ink ")'*
0.174535 0.10945 3.529x10°* (mN-H's
Lower 0.30728 0.383606 0.430773 in.
bound, L 0.78050 0.974360 [.Ovd163 cm
Upper 046166 0443182 0.430773 in.
bound, {/ 1.17136 1.1256X2 1.094163 cm
R 0.20025 0.07206 4465 x 10"
CPU time 4.02 4.3 5.17 %
350 kips, 105 kips
-
* —3
—) —
——y -
— Da L «120in (305¢m)
" P 2
e—" =o STORIES A, A
o —o . .
b4 » — 1-i0 100Nt 3000in
~ o (6453emi20816em*}
= 1n-20 80ir?  3500in*
» -+ (316cm*) (14868icm®)
3 pud 21-30  60in®  2300in*
— - - {387emii04058emY
" y g3 3-40  50in*  2000in*
a 3 - {3231 (B3246cm*)
5 3 3o 41-50 40in?  130Qin°
S " :; (: (258cm 62435 cmY)
o » —
» = BAYS Ly
pu—— by 110 180w (437¢m)
p— : 2-9 2iGin (349cm)
S 3s STORES A, Iy
Q H 3; 1-10 47int  6000INS
2 - 2a (303cm)(249739cm
—_— - H-30 4Tin'  8i00In*
+ 3 (303cm'}212278emT
-+ 3t-30 38in'  4000In"
a3 ta {245cm*) (166 493¢m?
= — )-5
o3 .
o3 T 134
no i i e o x °
o

Fig. I 1. Structure and loading : example 2.

order for the economy of the new method to be fully appreciated, a very large structure
must be considered.

The 50 story, ten bay structure shown in Fig. 11 is used to illustrate the advantage of
the H/S method. As indicated in the figure, the beam and column properties change every
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Fig. 12. Mesh 4 of example 2.

Table 2. Supcerclement meshes for 50-story frame cxample (case |, couarsest ; case 7, finest)

Mesh 2 i

1. kinematical 1,11 10, 20, 30, 40, 50
1, statical [,2,9,10 1, 10, 20, 30, 40, 50

2, kincmatical 1,11 5. 10, 15, 20, 25, 30, 35, 40, 45, 50

2, statical 1,2,9. 10 1,5, 10, 15, 20, 25, 30, 35, 40, 45, 50

3, kinematical 1,2, 10, 11 S, 10, 15, 20, 25, 30, 35, 40, 45, 50

3, statical 1,2, 38,910 1,5, 10, 15, 20, 25, 30, 35, 40, 45, 50O

4, kinematical 1,2, 10, 11 I, 3,5, 10,15, 20, 25, 30, 35, 38, 40, 43, 45, 48, 50

4, statical 1,2,3,8,9, 10 1, 3,5, 10, 12, 15, 20, 25, 30, 35, 38, 40, 45, 48, 50

5, kinematical 1,2, 10, 11 [,3,5. 8,10, 15, 18, 20, 22, 25, 28, 30. 32, 35, 38, 40, 43, 45, 48, 50

3. statical 1,2,3,8,9,10 1, 3,5 10, 12,15, 18, 22, 25, 28, 30, 32, 35, 38, 40, 42, 45, 48, 50

6, kinematical 1,2,3,9,10, 11 1, 3.5, 8,10, 15, 18, 20, 22, 25, 28, 30, 32, 35, 38, 40, 43, 45, 48, 50

6, statical 1,2,3,4,7,8,9, 10 1. 3,5, 10, 12, 15, 18, 20, 22, 25, 28, 30, 32, 35, 38, 40, 42, 45, 48,
50

7. kinematical 1,2,3,9,10, 11 1,2, 3,5, 8,10, 12, 15, 18, 20, 22, 25, 28, 30, 32, 35, 38, 40, 43, 44,
45, 47, 48, 49, 50

7. statical 1,2,3,4,7,8,9, 10 1,2.3.4,5, 8,10, 12, 15, 18, 20, 22, 25, 28, 30, 32, 35, 38, 40, 42,

44, 45, 48, 49, 50

ten stories and the loading also varies with height. The situation pictured is therefore
“realistic”, although the member properties are not the product of an actual design.

Seven sets of superclement meshes (Fig. 12), numbered -7 in order of increasing
fineness, are defined in Table 2. The essential results of the /S analysis of the seven cases,
using HYPER, are given in a graphical representation by Figs 13 and [4. Details are given
in Table 3. Figure 13 shows the convergence of | V*|® and |V**|° to the value of [|S]>.
It is seen that the energy of the statec V* converges rapidly as the number of degrees of
freedom is increased while ||V**||? approaches the true value somewhat more slowly. As
the theory demands. cach successive refinement of the kinematical and statical superelement
meshes drives || V*|* higher and ||V**||? lower. The question of how exactly to achieve the
best values for a given number of degrees of freedom will not be explored here. (Indeed,
one of the virtues of the H/S method is that any reasonable meshes will yield reasonable
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Table 3. Results obtained from HYPER for S0-story frame example

Mcsh 1 2 3 4 s 6 7 Units
viv 30772 60/132 120/19% 1%0/270 240360 3607480 450,600
VeI K26.949 8K 1.043 942,058 9K0. 198 981411 955.442 996,104 k in.
93.4323 99,5440 106,438 110,747 110,884 112,469 112,544 kNm
Vet 147997 1156.15 12s8.21 10K0.16 1035.38 1030.37 1022.02 kin.
167.214 130.626 1270 122.041 116,982 16415 115472 KNm
£ox 391714 405925 4,327 444719 444810 4.534%7 4.53690 in.
9.94953 10,3105 10217 11.2959 11.29%2 11.5186 11.5237 cm
e =232337 0 232331 232467 -232474 0 ~232472 0 -232.562 232501 in.
—590.135  —S90.120  —590.466  ~S590.484  —590.478  —5Y90.556  —S90.579 cm
ey 0.023885  0.024570  0.026302  0.026775  0.026808 0027489 0.027535 in.
0060668 0062407  ON66K0T 0068007 0068093 0069722 0069940 - om
g 2.00465 200468 2.00560 2.00563 2.00564 2.00584 2.00594 in.
5.09181 S.09188 5.09423 5,09430 5.09431 $.09484 5.09508 cm
¢C.G) 432516 439978 4.47096 452153 4.52301 455123 4.54769 in.
10,9854 111752 11.3562 11.4%47 11,4858 11,5601 11.5511 cm
R 127172 8.29313 6.76661 4.99900 3.67327 2.95490 2.5452 (kin)"?
135814 81510 71,9250 $3.1364 39.0447 31,4089 27.054 (Nm)'?
181 0.07186 0.06671 0.04236 0.03591 0.03540 0.0201 00150 (n k"
A RNIR]] 0.15942 0.10122 0.08582 0.08459 0.0450 00359  (mN 'y
L 3.40702 3.84580 4.18433 4.34199 4.39298 4.49185 4.50945 in.
8.65383 9.76834 10.6282 11.02866 11,1582 11,4093 11.45400 cm
v 5.24331 495235 475758 470106 465305 4.61062 4.58594 in.
13.31K0 12.5790 12.0842 11.9407 118187 117110 11.6483 cm
R 0.21228 0.12577 0064108 0.03971 0.028749  0.01305 0.008410
CPUtime  35.74 36.64 36.63 3821 39.15 43147 46.21 s

bounds.) It is possible, however, to make certain observations concerning the effect of
adding additional lines of nodes to the meshes. In going from case 4 to case 5. for example,
the extra horizontal nodal lines cause ||V**}® to decrease markedly but have a relatively
small effect on || V*}|>. On the other hand, in going from case 5 to case 6, the added vertical
nodal lines cause a large increasc in [[V*||? and only a small decrcase in [V**||% It is
anticipated that the analyst who uses the H/S method will develop a sense of how to
construct superelement meshes for bounds of a desired closeness.

The upper and lower bounds provided by HYPER are shown in Fig. {4 as a function
of the total number of degrees of freedom (DOF). v’ +v”, for each of the seven sets of
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meshes. The value of (C. G) = YL+ U) is also shown. [t may be noted that (C. G) provides
a good approximation of the drift and initially approaches 1, from below, It should be
remembered, however, that <C.G) is not theorctically guaranteed to represent either a
lower or an upper bound on the displacement.

It is now appropriale to examine the critical question of computer time. Figure 15
shows the CPU time required by HYPER to achieve certain values of R for the scven sets
of meshes. (The significance of the three diflerent curves below HYPER will be discussed
below.) The time required by the conventional matrix displacement method (CMD) is
shown as a horizontal dashed line, 1t is secen immediately that HYPER is faster than the
CMD method even when very small values of R are required. In fact, for the finest mesh
used it is found that R < 0.01 and the time required is still well below that required by the
conventional matrix displacement method. An cequally important observation is that the
computational effort of the new method rises at a relatively slow rate over a wide range of
values of R, extending well into the region required for “close™ bounds. This remarkable
feature of the £//8 method is discussed in more detail below. While it is clear that for
sufficiently small values of R the HYPER curve must intersect the CMD curve, it is also
obvious that, for this type of problem at least, the bounds may be narrowed very far without
any large increase in computer time.

In order better to understand this behavior, a simple analysis may be carried out by
considering a square frame having N column lines and N beam lines. (To simplify matters
the ground line is treated as a beam line.) If a uniform kinematical superelement mesh
having v horizontal and vertical lines of nodes is assumed, then the number of multiplications
required to carry out transformation (89) , i.c.

K ="Kl (168)

may be determined as follows. Equation (168) is first rewritten

N N ha Al
Kif=3 ¥ 3 LKy o iy =1ty (169)

x=d flela=l y=1

Duc to the sparseness of the matrices involved. only a small number of the mul-
tiplications yield non-zero products. Furthermore, the symmetry of K requires only the
computation of five matrices for cach node (x', ")
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The nodes associated with each of these five matrices are shown in Fig. 16. To compute
K/, the number of multiplications required is (2)(5) {[2(¥N = 1)/(v—D]—=1}° where
the factor in curly brackets squared is the number of joints (. 7) for which the factor I
does not vanish, and the factor 5 is the number of nodes (f. /) associated with each
(2.i) for which K™ is a non-zero matrix. If a similar analysis is carricd out for the other
four matrices in (170) it is found that the total number of multiplications required for
transtormation (169) is

M = 10V (104° - 64+ 1) (7

where A = (N =)/ (v—=1).
This may be approximated closcly by

M = 10v[(10)' 2A—1]7. (172)
Differentiation of this expression with respect to v then shows that
dMjdy =~ 200[(10)" Fi— 110y 24, (1 = )] = 1 a7

which is clearly negative. It may be concluded that, for the idealized problem formulited
above, the number of multiplications required for transformation (168) decreases as the
uniform mesh is made finer. It should be noted that no provision has been made for nodes
that lic on the boundary of the structure; hence the analysis holds strictly only for very
large frames with relatively fine meshes.

Now the results presented in Fig. 15 may be understood clearly. The lowest curve
below HYPER represents the basic computational effort; it is independent of the nature
of the superelement meshes (computation of K, B, P, A, [S$*]°, Gl 3, ete.). The second
curve represents the basic computations plus those associated with transformations (89)
giving K, B, etc. It is observed that this curve tends generally downward with decreasing
values of R. This is exactly the behavior predicted by eqn (173) : i.e. K and B require less
computation as the kinematical and statical superelement meshes are made finer. Due to
this behavior the total CPU time required by HYPER docs not begin to increase significantly
until the vertex equations, eqns (87). become large enough so that their solution requires
more time than is saved in their formulation. Accordingly, the uppermost curve in Fig. 15
shows that there is a “window™ at the right-hand end in which R may be decreased without
any significant increase in CPU time.
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CONCLUSIONS

This work consists of two parts. Part [[1] develops the theoretical background for the
application of the hypercircle method to frame analysis. In Part I, the theory of the
hypercircle is applied to rigid-jointed plane frames composed of horizontal beams and
vertical columns. A superelement method is introduced to reduce the number of kinematical
and statical degrees of freedom of the structure while creating subspaces that pass as closely
as desired to the actual solution. To test the usefulness of the new method as a tool for
determining upper and lower bounds on the “drift” of tall buildings, two structures are
studied. It is found that the hypercircle/superelement method of analysis gives useful bounds
even for relatively coarse superelement meshes. For a 50-story. ten bay frame the new
method provides close bounds in significantly less time than is required by the conventional
matrix displacement approach.
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APPENDIX. NOTATION

B 3 x 3 matrix of inner products of basic residual states

B transformed matrix of inner products

Do states used in construction of 83 see eqns (113)

g8 transformed vectors used in computation of | Glf, defined as solution of eqns (151)

JrJ: states resulting from unit pressure and suction loads at ith story of ath bay (Fig. 1)

K/ 3 x 3 matrices of inner products of basic compatible states

K transformed matrices of inner products

H.L, height of ith story, length of xth bay

N, N™ one-dimensional linear shape functions in the vertical and horizontal directions, defined by
egqns (10S) and (106)

P, P pressure and suction loads acting at ith story of xth bay

a.q quantities used in computation of §8%*]], defined by eyns (124)

R, T;.S! busic restdual states associated with cell (2, 4)

roes redundant forces associated with basic residual states

ur.v.e basic compatible states associated with joint (2,4

woer i joint displacements assoctated with basic compuatible states

W, li',‘," inner products of the states Z7, Z7 ; defined by eyns (126)

x4 vector of joint displacements associated with joint (8, /)

x¥ transformed vector of joint displacements

7.7 states used in construction of S§*, defined by eqns (122)

2'):. (") vectors defined by eqns (153) and (158)

@), (@)= vectors obtained from transtormations (152)

A/ right-hund side vectors of force equations, defined by eqn (131)

Ar transformed right-hand side vectors of force equations

r matrices of two-dimensional shape functions associated with kinematical superelement mesh

QY matrices of two-dimensional shape functions associated with statical superelement mesh

n.n; sum of pressure, suction loads acting on xth bay from ith story to top of bay

o vector of redundant forces associated with cell (4, /)

af transformed vector of redundant forces.



